Home / XCast Products / Tips & Tricks / Codec Information and Bandwidth Calculations

Codec Information and Bandwidth Calculations



Codec Information Bandwidth Calculations
Codec & Bit Rate (Kbps) Codec Sample Size (Bytes) Codec Sample Interval (ms) Mean Opinion Score (MOS) Voice Payload Size (Bytes) Voice Payload Size (ms) Packets Per Second (PPS) Bandwidth MP or FRF.12 (Kbps) Bandwidth w/cRTP MP or FRF.12 (Kbps) Bandwidth Ethernet (Kbps)
G.711 (64 Kbps) 80 Bytes 10 ms 4.1 160 Bytes 20 ms 50 82.8 Kbps 67.6 Kbps 87.2 Kbps
G.729 (8 Kbps) 10 Bytes 10 ms 3.92 20 Bytes 20 ms 50 26.8 Kbps 11.6 Kbps 31.2 Kbps
G.723.1 (6.3 Kbps) 24 Bytes 30 ms 3.9 24 Bytes 30 ms 33.3 18.9 Kbps 8.8 Kbps 21.9 Kbps
G.723.1 (5.3 Kbps) 20 Bytes 30 ms 3.8 20 Bytes 30 ms 33.3 17.9 Kbps 7.7 Kbps 20.8 Kbps
G.726 (32 Kbps) 20 Bytes 5 ms 3.85 80 Bytes 20 ms 50 50.8 Kbps 35.6 Kbps 55.2 Kbps
G.726 (24 Kbps) 15 Bytes 5 ms 60 Bytes 20 ms 50 42.8 Kbps 27.6 Kbps 47.2 Kbps
G.728 (16 Kbps) 10 Bytes 5 ms 3.61 60 Bytes 30 ms 33.3 28.5 Kbps 18.4 Kbps 31.5 Kbps
G722_64k(64 Kbps) 80 Bytes 10 ms 4.13 160 Bytes 20 ms 50 82.8 Kbps 67.6Kbps 87.2 Kbps
ilbc_mode_20(15.2Kbps) 38 Bytes 20 ms NA 38 Bytes 20 ms 50 34.0Kbps 18.8 Kbps 38.4Kbps
ilbc_mode_30(13.33Kbps) 50 Bytes 30 ms NA 50 Bytes 30 ms 33.3 25.867 Kbps 15.73Kbps 28.8 Kbps

Explanation of Terms

Name Explanation
Codec Bit Rate (Kbps) Based on the codec, this is the number of bits per second that need to be transmitted to deliver a voice call. (codec bit rate = codec sample size / codec sample interval).
Codec Sample Size (Bytes) Based on the codec, this is the number of bytes captured by the Digital Signal Processor (DSP) at each codec sample interval. For example, the G.729 coder operates on sample intervals of 10 ms, corresponding to 10 bytes (80 bits) per sample at a bit rate of 8 Kbps. (codec bit rate = codec sample size / codec sample interval).
Codec Sample Interval (ms) This is the sample interval at which the codec operates. For example, the G.729 coder operates on sample intervals of 10 ms, corresponding to 10 bytes (80 bits) per sample at a bit rate of 8 Kbps. (codec bit rate = codec sample size / codec sample interval).
MOS MOS is a system of grading the voice quality of telephone connections. With MOS, a wide range of listeners judge the quality of a voice sample on a scale of one (bad) to five (excellent). The scores are averaged to provide the MOS for the codec.
Voice Payload Size (Bytes) The voice payload size represents the number of bytes (or bits) that are filled into a packet. The voice payload size must be a multiple of the codec sample size. For example, G.729 packets can use 10, 20, 30, 40, 50, or 60 bytes of voice payload size.
Voice Payload Size (ms) The voice payload size can also be represented in terms of the codec samples. For example, a G.729 voice payload size of 20 ms (two 10 ms codec samples) represents a voice payload of 20 bytes [ (20 bytes * 8) / (20 ms) = 8 Kbps ]
PPS PPS represents the number of packets that need to be transmitted every second in order to deliver the codec bit rate. For example, for a G.729 call with voice payload size per packet of 20 bytes (160 bits), 50 packets need to be transmitted every second [50 pps = (8 Kbps) / (160 bits per packet) ]

Bandwidth Calculation Formulas

These calculations are used:

  • Total packet size = (L2 header: MP or FRF.12 or Ethernet) + (IP/UDP/RTP header) + (voice payload size)
  • PPS = (codec bit rate) / (voice payload size)
  • Bandwidth = total packet size * PPS

Sample Calculation
For example, the required bandwidth for a G.729 call (8 Kbps codec bit rate) with cRTP, MP and the default 20 bytes of voice payload is:

  • Total packet size (bytes) = (MP header of 6 bytes) + ( compressed IP/UDP/RTP header of 2 bytes) + (voice payload of 20 bytes) = 28 bytes
  • Total packet size (bits) = (28 bytes) * 8 bits per byte = 224 bits
  • PPS = (8 Kbps codec bit rate) / (160 bits) = 50 pps

Note: 160 bits = 20 bytes (default voice payload) * 8 bits per byte

  • Bandwidth per call = voice packet size (224 bits) * 50 pps = 11.2 Kbps

Configuring Voice Payload Sizes in Cisco CallManager and IOS Gateways
The voice payload size per packet can be configured in Cisco CallManager and Cisco IOS gateways.

Note: If the Cisco IOS gateway is configured in Cisco CallManager as a Media Gateway Control Protocol (MGCP) gateway, all the codec information (codec type, payload size, voice activity detection, and so on) is controlled by Cisco CallManager.

In Cisco CallManager, the voice payload size per packet is configurable on a systemwide basis. This attribute is set in Cisco CallManager Administration (Service > Service Parameters > _select_server_ > Cisco CallManager) with these three service parameters:

  • PreferredG711MillisecondPacketSize—(Default setting: 20 ms. Available settings: 10, 20, and 30 ms.)
  • PreferredG729MillisecondPacketSize—(Default setting: 20 ms. Available settings: 10, 20, 30, 40, 50, and 60 ms.)
  • PreferredG723MillisecondPacketSize—(Default setting: 30 ms. Available settings: 30 and 60 ms.)

In Cisco CallManager, the voice payload size is configured in terms of milliseconds (ms) samples. Based on the codec, this table maps some ms samples to the actual payload size in bytes.


Codec Voice Payload Size (ms) Voice Payload Size (Bytes) Comments
G.711 20 ms (default) 160 Bytes Notice that the codec bit rate is always maintained. For example: G.711 codec = [240 bytes * 8(bits/bytes)] / 30 ms = 64 Kbps
30 ms 240 Bytes
G.729 20 ms (default) 20 Bytes
30 ms 30 Bytes
G.723 30 ms (default)



 RSS of this page